আকারের ফাংশনসমূহকে সূচকীয় ফাংশন বলা হয়, যেখানে এবং । এরূপ ফাংশনের ডোমেন হলো স্বাভাবিক সংখ্যার সেট এবং রেঞ্জ ।
|
|
|
|
|
|
|
|
মনে করি, , এবং তাই,
সূচক ফাংশন একটি এক-এক ফাংশন। সুতরাং এর বিপরীত ফাংশন বিদ্যমান, যাকে লগারিদমীয় ফাংশন বলা হয়। এর বিপরীত ফাংশন হবে . আকারের ফাংশনকে লগারিদমীয় ফাংশন বলে, যেখানে লগারিদমের ভিত্তি, এবং ।
ভিত্তিক লগারিদমকে স্বাভাবিক লগারিদম বলা হয়। এর স্বাভাবিক লগারিদম বা , এবং হলে, । যেহেতু , সুতরাং । মনে করি,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
যেহেতু একটি ধ্রুব সংখ্যা, সুতরাং গুণফল, ভাগফল ও সংযোজিত ফাংশনের অন্তরজ অংশের উদাহরণ - 6 হতে লেখা যায়, ।
এর অন্তরজ
সুতরাং,
দুটি ধনাত্মক সংখ্যা এবং এর জন্য,
মনে করি,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
এর অন্তরজ
লগারিদমীয় অন্তরীকরণ (Logarithmic Differentiation)
[সম্পাদনা]
মনে করি একটি ফাংশন এবং । সংযোজিত ফাংশনের অন্তরজের সূত্র হতে পাই,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
হলে এ ফাংশনের এর অন্তরজ
আমরা দেখেছি, স্বাভাবিক লগারিদমের ভিত্তি যা একটি ধ্রুব সংখ্যা। তবে এর মান কত তা এই উইকিবইয়ে এখন পর্যন্ত নির্ণয় করা হয় নি। সুতরাং এর মান নির্ণয় করা গুরুত্বপূর্ণ। এর মান নির্ণয়ে সবচেয়ে বহুল ব্যবহৃত পদ্ধতি হলো একটি ধারার সাহায্যে নির্ণয় করা। ধারাটি নিম্নরূপ:
সুইস গণিতবিদ লিউনার্দ অয়লার (১৫ এপ্রিল ১৭০৭ – ১৮ সেপ্টেম্বর ১৭৮৩) সর্বপ্রথম এই ধ্রুবকের জন্য বর্ণ ব্যবহার এবং এর মান নির্ণয়ের জন্য উক্ত অসীম ধারা ব্যবহার করেন। এ ধারা নির্ণয়ে টেইলরের সূত্র ব্যবহার করা হয়েছে, যা পরবর্তীতে আলোচনা করা হবে। তবে একটি লিমিটের সাহায্যেও এ সংখ্যার মান নির্ণয় করা যায়।